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Abstract

In this paper, we extend our earlier unique continuation results [8] for the Schrödinger-
type inequality |∂̄u| ≤ V |u| on a domain in Cn by removing the smoothness assumption on
solutions u = (u1, . . . , uN ). More specifically, we establish the unique continuation property
for W 1,1

loc solutions when the potential V ∈ Lp
loc, p > 2n; and for W 1,2n+ϵ

loc solutions when
V ∈ L2n

loc with N = 1 or n = 2. Although the unique continuation property fails in general if

V ∈ Lp
loc, p < 2n, we show that the property still holds for W 1,1

loc solutions when V is a small
constant multiple of 1

|z| .

1 Introduction

Let Ω be a domain in Cn. Suppose u : Ω → CN with u ∈ W 1,1
loc (Ω), and satisfies the following

Schrördinger-type inequality
|∂̄u| ≤ V |u| a.e. on Ω, (1.1)

for some nonnegative locally Lebesgue integrable function V on Ω. This paper is a continuation of
an earlier work [8] of the same authors on the unique continuation property for (1.1). Specifically,
we investigate whether any Sobolev function u satisfying (1.1) vanishes identically if u vanishes
to infinite order in the L1 sense at some z0 ∈ Ω. Here for q ≥ 1, u ∈ Lq

loc(Ω) is said to vanish to
infinite order (or, be flat) in the Lq sense at a point z0 ∈ Ω, if for all m ≥ 1,

lim
r→0

r−m

∫
|z−z0|<r

|u(z)|qdvz = 0.

While Example 1 indicates the general failure of the unique continuation property for Lp
loc

potentials with p < 2n, it was shown in [8] the property holds for smooth solutions to (1.1) with
Lp
loc potentials, p > 2n, and L2n

loc potentials if either N = 1 or n = 2. Although the smooth
category remains of primary interest, our goal in this paper is to extend the unique continuation
property to general Sobolev solutions.

We first show the unique continuation property holds for W 1,1
loc solutions to (1.1) when the

potential V ∈ Lp
loc for some p > 2n. In particular, this generalizes a unique continuation result

of Bell and Lempert in [2] for bounded potentials. See also a very recent result by Shi [9] under
some stronger assumptions on the potentials and the regularity of solutions.

Theorem 1.1. Let Ω be a domain in Cn. Suppose u : Ω → CN with u ∈ W 1,1
loc (Ω), and satisfies

|∂̄u| ≤ V |u| a.e. on Ω for V ∈ Lp
loc(Ω), p > 2n. If u vanishes to infinite order in the L1 sense at

some z0 ∈ Ω, then u vanishes identically.
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Similar to the approach in [8], the proof utilizes a complex polar coordinate formula in Lemma
3.1 to convert the unique continuation problem in higher dimensional domains to a known one-
dimensional result in [7] (see Theorem 2.1). While the majority of the work towards the proof
was already established in [8], unlike the smooth case, the flatness of Sobolev solutions and the
inequality (1.1) do not extend immediately to their sliced counterparts. The novelty in the proof is
to show that the minimalW 1,1

loc Sobolev regularity of u is sufficient in ensuring the sliced solutions to
satisfy all the assumptions in Theorem 2.1. In fact, the assumptions u ∈ W 1,1

loc and V ∈ Lp
loc, p > 2n

here actually imply u ∈ W 1,p
loc , following a standard boot-strap argument. This, combined with

Lemma 3.3, transforms a W 1,1
loc solution of (1.1) to a family of W 1,2

loc solutions to some Schrödinger-
type inequalities along almost every complex radial direction. Moreover, we establish in Lemma
3.4 an equivalence between the L1 flatness ofW 1,p

loc functions and a much stronger geometric flatness
as in (3.6), which further passes the flatness onto the sliced solutions.

When the potential V ∈ L2n
loc, we obtain the following two unique continuation results: one for

the case N = 1 (namely, u is a scalar function), and the other for the case n = 2. The integrability
assumption of V here is sharp, as indicated by Example 1.

Theorem 1.2. Let Ω be a domain in Cn. Suppose u : Ω → C with u ∈ W 1,2n+ϵ
loc (Ω) for some

ϵ > 0, and satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2n
loc(Ω). If u vanishes to infinite order in

the L1 sense at some z0 ∈ Ω, then u vanishes identically.

Theorem 1.3. Let Ω be a domain in C2. Suppose u : Ω → CN with u ∈ W 1,2n+ϵ
loc (Ω) for some

ϵ > 0, and satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L4
loc(Ω). If u vanishes to infinite order in

the L1 sense at some z0 ∈ Ω, then u vanishes identically.

We have to assume u ∈ W 1,2n+ϵ
loc in both theorems above to apply Lemma 3.3 and Lemma 3.4.

This is essentially due to the failure of the boot-strap argument to improve the Sobolev regularity
of solutions when V ∈ L2n

loc. It would be desirable to know whether this regularity assumption on
u can be weakened further.

On the other hand, it is worth noting that for the Laplacian ∆, the unique continuation
property for W 2,2

loc (Ω) solutions of the inequality

|∆u| ≤ V |∇u| on Ω ⊂ Rd

with V ∈ Ld
loc(Ω) holds when d = 2, 3, 4, but fails in general when d ≥ 5. See the works of Chanillo-

Sawyer [4] and Wolff [10,11]. In contrast, Theorem 1.2 shows that, in the critical V ∈ LdimR Ω
loc (Ω)

case, the unique continuation property for ∂̄ is dimension-independent, highlighting a significant
difference from the case of ∆.

Finally, we explore a special case where V is a constant multiple of 1
|z| . Note that

1
|z| /∈ L2n

loc near

0. Although as in the L2n
loc potential case the boot-strap argument does not improve the Sobolev

regularity of solutions near 0 in general, thanks to Lemma 4.4, the additional flatness of u at 0
allows us to eventually push u to fall in W 1,q

loc for all q < ∞. In view of this, the N = 1 case in the
following theorem is simply a direct consequence of [8, Theorem 5.1] for W 1,2

loc solutions. For N ≥ 2
case, one can use a similar approach as in Theorem 1.1 to weaken the smoothness assumption of
u in [8, Theorem 1.5] to merely W 1,1

loc regularity. It should also be mentioned that when N ≥ 2,
the unique continuation property fails in general if C is large, see Example 2.

Theorem 1.4. Let Ω be a domain in Cn and 0 ∈ Ω. Let u : Ω → CN with u ∈ W 1,1
loc (Ω), and

satisfy |∂̄u| ≤ C
|z| |u| a.e. on Ω. Assume u vanishes to infinite order in the L1 sense at 0 ∈ Ω.

1). If N = 1, then u vanishes identically.
2). If N ≥ 2 and C < 1

4
, then u vanishes identically.
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2 Known results and examples

In this section, we list a few known unique continuation properties for (1.1) that will be used
in our paper, along with counter-examples for certain types of potentials. For clarification, u =
(u1, . . . , uN) ∈ W 1,1

loc (Ω) is said to satisfy the inequality |∂̄u| ≤ V |u| a.e. on Ω if

|∂̄u| :=

(
n∑

j=1

N∑
k=1

|∂̄juk|2
) 1

2

≤ V

(
N∑
k=1

|uk|2
) 1

2

:= V |u| a.e. on Ω.

It is worth pointing out that, every u ∈ W 1,1
loc (Ω) satisfying |∂̄u| ≤ V |u| a.e. on Ω for some scalar

function V ∈ Lp
loc(Ω) is a weak solution to a Schrödinger-type equation of ∂̄ below

∂̄u = uV on Ω

for some N ×N matrix-valued (0, 1) form V = (Vjk) ∈ Lp
loc(Ω), simply by letting Vjk :=

uj ∂̄uk

|u|2 .

Theorem 2.1. [7] Let Ω be a domain in Cn. Suppose u : Ω → CN with u ∈ W 1,2
loc (Ω), and

satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2
loc(Ω).

1). The weak unique continuation holds: if u vanishes in an open subset of Ω, then u vanishes
identically.
2). If n = 1, then the (strong) unique continuation holds: if u vanishes to infinite order in the L2

sense at some z0 ∈ Ω, then u vanishes identically.

The unique continuation to (1.1) fails in general if the potential does not belong to L2n
loc.

Example 1. For each 1 ≤ p < 2n, let ϵ ∈ (0, 2n
p
− 1) and consider

|∂̄u| ≤ V |u| := ϵ

2|z|ϵ+1
|u| on B1 ⊂ Cn.

Note that V ∈ Lp(B1), and u0 = e−
1

|z|ϵ is a nontrivial smooth solution to the above equation that
vanishes to infinite order at 0.

Despite Example 1, the unique continuation property can still be expected for some special
forms of potentials not in L2n

loc, for instance, when the potential is a multiple of 1
|z| .

Theorem 2.2. [8, Theorem 5.1] Let Ω be a domain in Cn and 0 ∈ Ω. Let u : Ω → C with
u ∈ W 1,2

loc (Ω), and satisfies |∂̄u| ≤ C
|z| |u| a.e. on Ω for some constant C > 0. If u vanishes to

infinite order in the L2 sense at 0, then u vanishes identically.

Theorem 2.3. [8, Theorem 6.1] Let Ω be a domain in C and 0 ∈ Ω. Let u : Ω → CN with
u ∈ W 1,2

loc (Ω), and satisfy |∂̄u| ≤ C
|z| |u| a.e. on Ω for some positive constant C < 1

4
. If u vanishes

to infinite order in the L2 sense at 0, then u vanishes identically.

In particular, when N ≥ 2 and C is large, the above unique continuation property no longer
holds in general, as indicated by an example below of the first author and Wolff [6], or [1] by
Alinhac and Baouendi.
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Example 2. Let v0 : C → C be the nontrivial smooth scalar function constructed in [6] that

vanishes to infinite order at 0 and satisfies |△v0| ≤ C♯

|z| |∇v0| on C for some constant C♯ > 0.

Letting u0 := (∂ℜv0, ∂ℑv0), then u0 : C → C2 is smooth, vanishes to infinite order at 0, and

satisfies |∂̄u0| ≤ C♯

2|z| |u0| on C.

In the case when the source dimension n = 1, the unique continuation property holds even
when the potentials take on the following hybrid forms involving both powers of 1

|z| and Lebesgue

functions. Note that none of these potentials below belongs to L2
loc.

Theorem 2.4. [8, Theorem 5.5] Let Ω be a domain in C containing 0 and 1 < β < ∞. Suppose
u : Ω → C with u ∈ W 1,2

loc (Ω), and satisfies

|∂̄u| ≤ |z|−
β−1
β V |u| a.e. on Ω

for some V ∈ L2β
loc(Ω). If u vanishes to infinite order in the L2 sense at 0, then u vanishes

identically.

Theorem 2.5. [8, Theorem 7.1] Let Ω be a domain in C and 0 ∈ Ω. Suppose u : Ω → CN with
u ∈ W 1,2

loc (Ω), and satisfies

|∂̄u| ≤ |z|−
1
2V |u| a.e. on Ω

for some V ∈ L4
loc(Ω). If u vanishes to infinite order in the L2 sense at 0, then u vanishes

identically.

3 Properties of sliced functions

As will be seen in the next section, we shall slice Sobolev solutions to (1.1) and the potential
along almost all complex one-dimensional radial directions. The key idea to justify this approach
lies in the following complex polar coordinate formula, whose proof can be found, for instance,
in [8, Lemma 4.2]. Denote by S2n−1 the unit sphere in Cn. Let Br be the open ball centered at 0
of radius r in Cn, and Dr be the open disk centered at 0 of radius r in C.

Lemma 3.1. Let u ∈ L1(Br). Then for a.e. ζ ∈ S2n−1, |w|2n−2u(wζ) as a function of w ∈ Dr is
in L1(Dr), with ∫

|z|<r

u(z)dvz =
1

2π

∫
|ζ|=1

∫
|w|<r

|w|2n−2u(wζ)dvwdSζ .

Corollary 3.2. Let u ∈ Lp(Br) for some p > n (= dimCBr). Then given a.e. ζ ∈ S2n−1,
v(w) := u(wζ) as a function of w ∈ Dr is in Lq(Dr) for all 1 ≤ q < p

n
. In particular, if

u ∈ Lp(Br) for some p > 2n, then for a.e. ζ ∈ S2n−1, v ∈ L2(Dr).

Proof. by Lemma 3.1∫
|z|<r

|u(z)|pdvz =
1

2π

∫
|ζ|=1

∫
|w|<r

|w|2n−2|u(wζ)|pdvwdSζ .

Then for a.e. ζ ∈ S2n−1, ∫
|w|<r

|w|2n−2|u(wζ)|pdvw < ∞. (3.1)
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Making use of Hölder’s inequality∫
|w|<r

|v(w)|q dvw =

∫
|w|<r

|w|
(2n−2)q

p |v(w)|q · |w|−
(2n−2)q

p dvw

≤
(∫

|w|<r

|w|2n−2|u(wζ)|pdvw
) q

p
(∫

|w|<r

|w|−
(2n−2)q

p
p

p−q dvw

) p−q
p

=

(∫
|w|<r

|w|2n−2|u(wζ)|pdvw
) q

p
(∫

|w|<r

|w|−
(2n−2)q

p−q dvw

) p−q
p

.

Since q < p
n
, we have (2n−2)q

p−q
< 2 and thus

∫
|w|<r

|w|−
(2n−2)q

p−q dvw < ∞. This, combined with (3.1),

proves the corollary.

In order to convert the unique continuation property in the higher source dimensional case to
the complex one-dimensional case where Theorem 2.1 can be applied, we first establish Lemma 3.3
below. This allows us to obtain sufficient regularity for the sliced functions when u ∈ W 1,p

loc , p > 2n.
As demonstrated in Example 3 in Section 4, the lemma does not hold for general W 1,2n functions.

Lemma 3.3. Suppose u ∈ W 1,p(Br) for some p > 2n (= dimR Br). Then for a.e. ζ ∈ S2n−1,
v(w) := u(wζ) as a function of w ∈ Dr belongs to W 1,2(Dr). Moreover,

∇v(w) = ζ · ∇u(wζ), w ∈ Dr (3.2)

in the sense of distributions.

Proof. We only need to show (3.2). In fact, since u ∈ W 1,p(Br), p > 2n, if (3.2) holds, we can
apply Corollary 3.2 to u and ∇u respectively, and obtain v ∈ W 1,2(Dr).

Let uj ∈ C∞(Br) ∩ W 1,p(Br) be such that uj → u in the W 1,p(Br) norm and vj(w) :=
uj(wζ), w ∈ Dr. Then

∇vj(w) = ζ · ∇uj(wζ), w ∈ Dr. (3.3)

Since u is continuous on Br (and so is v on Dr), by Sobolev embedding theorem there exists some
constant C > 0 such that

∥vj − v∥C(Dr) ≤ ∥uj − u∥C(Br) ≤ C∥uj − u∥W 1,p(Br) → 0

as j → 0. In particular,
vj → v on Dr (3.4)

in the sense of distributions.
On the other hand, applying Lemma 3.1 to |∇u−∇uj|p, the function

gj(ζ) :=

∫
|w|<r

|w|2n−2|∇u(wζ)−∇uj(wζ)|pdvw, ζ ∈ S2n−1

satisfies ∫
|ζ|=1

|gj(ζ)|dSζ =

∫
|ζ|=1

∫
|w|<r

|w|2n−2|∇u(wζ)−∇uj(wζ)|pdvwdSζ

= 2π

∫
|z|<r

|∇u(z)−∇uj(z)|pdvz → 0
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as j → ∞. Hence, by passing to a subsequence if necessary (see, for instance, [3, Theorem 4.9]),
one has for a.e. ζ ∈ S2n−1,

gj(ζ) → 0

as j → 0. Making use of Hölder’s inequality∫
|w|<r

|ζ · ∇uj(wζ)− ζ · ∇u(wζ)|dvw ≤
∫
|w|<r

|w|−
2n−2

p · |w|
2n−2

p |∇uj(wζ)−∇u(wζ)|dvw

≤
(∫

|w|<r

|w|−
2n−2
p−1

) p−1
p

· (gj(ζ))
1
p → 0

as j → ∞. Here we used the fact that p > 2n, so 2n−2
p−1

< 2 particularly. This implies that

ζ · ∇uj(wζ) → ζ · ∇u(wζ) on Dr (3.5)

in the sense of distributions. (3.2) is thus proved in view of (3.3), (3.4) and (3.5).

The following lemma allows us to extend the flatness of W 1,p
loc , p > 2n solutions to their restric-

tions along the radial directions.

Lemma 3.4. Suppose u ∈ W 1,p(Br) for some p > 2n(= dimR Br). Then u vanishes to infinite
order in the L1 sense at 0 if and only if for every m ≥ 1,

|u(z)| = O(|z|m) for all |z| << 1. (3.6)

In particular, if u vanishes to infinite order in the L1 sense at 0 ∈ Br, then for a.e. ζ ∈ S2n−1,
v(w) := u(wζ) as a function of w ∈ Dr vanishes to infinite order in the L2 sense at 0 ∈ Dr.

Proof. The backward direction is obvious by definition. In fact, one can also easily check that, for
any given q ≥ 1, as long as u ∈ Lq near 0 and satisfies (3.6), u vanishes to infinite order in the Lq

sense at 0.
Assume u vanishes to infinite order in the L1 sense at 0. Since p > 2n, by Sobolev embedding

theorem u is continuous on Br with

sup
|z|<r

|u|+
∫
|z|<r

|∇u|p ≤ C0. (3.7)

for some constant C0 > 0. Fix some q with 2n < q < p. For every m ≥ 1, by the continuity of u
and the L1 flatness of u at 0, one has u(0) = 0 and∫

|z|<t

|u|
qp
p−q ≤ C

qp
p−q

−1

0

∫
|z|<t

|u| ≤ O(t
2pqm
p−q ), for all t << 1. (3.8)

Letting v := u2, then v ∈ W 1,p(Br) with ∇v = 2u∇u on Br. Moreover, making use of Hölder’s
inequality, (3.7) and (3.8),∫

|z|<t

|∇v|q =2q
∫
|z|<t

|u|q|∇u|q ≤ 2q
(∫

|z|<t

|u|
qp
p−q

) p−q
p
(∫

|z|<t

|∇u|p
) q

p

≤2pC
q
p

0

(∫
|z|<t

|u|
qp
p−q

) p−q
p

≤ O(t2qm), for all t << 1.

(3.9)
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On the other hand, since v(0) = 0 and q > 2n, there exists a constant C1 > 0 such that

sup
|z|≤ t

2

|v| ≤ C1t
1− 2n

q

(∫
Bt

|∇v|q
) 1

q

, for all t < r.

See, for instance, [5, pp. 283]. Together with (3.9), we get

|u(z)|2 = |v(z)| ≤ C1

(∫
B2|z|

|∇v|q
) 1

q

≤ O(|z|2m), for all |z| << 1.

This proves the forward direction.
Finally, if u vanishes to infinite order in the L1 sense at 0, then u satisfies (3.6) by the equivalence

of the two types of flatness. Hence for a.e. ζ ∈ S2n−1, (3.6) holds true for v as well. In particular,
since v ∈ L2 near 0 due to Lemma 3.3, v vanishes to infinite order in the L2 sense at 0.

We would like to note that, although both Lemma 3.3 and Lemma 3.4 are stated for scalar
functions for simplicity of notations, they can be seamlessly extended to the case of vector-valued
functions.

4 Proof of the main theorems

In this section we shall prove Theorems 1.1-1.4. Let us start by stating a local ellipticity lemma
of ∂̄, which will be repeatedly used in the boot-strap argument.

Lemma 4.1. [8, Lemma 3.1] Let Ω be a domain in Cn and 1 < p < ∞. Let V ∈ Lp
loc(Ω) be

a ∂̄-closed (0, 1) form on Ω. Then every solution to ∂̄f = V on Ω in the sense of distributions
belongs to W 1,p

loc (Ω).

Proof of Theorem 1.1: Without loss of generality, let z0 = 0, and r be small such that Br ⊂ Ω.

Since u ∈ L
2n

2n−1

loc (Br) by Sobolev embedding theorem, as an application of Hölder’s inequality, V u ∈

L

2n

(2n−1)+2n
p

loc (Br). It follows from Lemma 4.1 and the inequality (1.1) that u ∈ W
1, 2n

(2n−1)+2n
p

loc (Br) ⊂

L

2n

(2n−1)+2n
p −1

loc (Br). Since p > 2n, a boot-strap argument as above can eventually give u ∈ W 1,p
loc (Br).

For each fixed ζ ∈ S2n−1, let v(w) := u(wζ) and Ṽ (w) := V (wζ), w ∈ Dr. Since V ∈
Lp
loc(Br), p > 2n, by Corollary 3.2 we have Ṽ ∈ L2

loc(Dr). On the other hand, it follows from
Lemma 3.4 and the L1 flatness of u at 0 that v vanishes to infinite order in the L2 sense at 0.
Moreover, v ∈ W 1,2

loc (Dr) by Lemma 3.3, and as a consequence of (3.2),

|∂̄v(w)| = |ζ · ∂̄u(wζ)| ≤ V (wζ)|u(wζ)| = Ṽ (w)|v(w)|, w ∈ Dr.

Hence we can make use of Theorem 2.1 part 2) to v and obtain v = 0 on Dr for a.e. ζ ∈ S2n−1.
Thus u = 0 on Br. Apply the weak unique continuation property in Theorem 2.1 part 1) to
further get u ≡ 0 on Ω.

Before proving Theorems 1.2-1.3 for L2n
loc potentials, we point out that the slicing method in

the proof of Theorem 1.1 fails to work in general if V is merely in L2n
loc. More precisely, there exists

a L2n
loc potential V whose complex radial restriction is not in L2

loc.
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Example 3. Assume n ≥ 2. For each ϵ ∈
(
1
2
, 2n−1

2n

)
, consider

u(z) = e−(− ln |z|)ϵ , z ∈ B 1
2
⊂ Cn,

and

V (z) =
ϵ(− ln |z|)ϵ−1

2|z|
, z ∈ B 1

2
.

Then u ∈ W 1,2n(B 1
2
), V ∈ L2n(B 1

2
) and

|∂̄u| ≤ V |u| on B 1
2
.

(One can verify that u only vanishes to a finite order at 0 in the Lq sense for every q ≥ 1.) On
the other hand, for each ζ ∈ S2n−1, the complex radial restriction of V is

Ṽ (w) := V (wζ) =
ϵ(− ln |w|)ϵ−1

2|w|
, w ∈ D 1

2
.

It is easy to see that Ṽ /∈ L2
loc(D 1

2
) since ϵ > 1

2
.

Proof of Theorems 1.2 and 1.3: Let z0 = 0 and r > 0 be small such that Br ⊂ Ω. For each fixed
ζ ∈ S2n−1, let Ṽ (w) := |w|n−1

n V (wζ) and v(w) := u(wζ), w ∈ Dr. It follows from Lemma 3.1
that Ṽ ∈ L2n

loc(Dr) for a.e. ζ ∈ S2n−1. On the other hand, since u ∈ W 1,p
loc (Br) for some p > 2n,

v vanishes to infinite order at 0 in the L2 sense by Lemma 3.4. Moreover, as a consequence of
Lemma 3.3, v ∈ W 1,2

loc (Dr) and satisfies

|∂̄v(w)| ≤ |w|−
n−1
n Ṽ (w)|v(w)|, w ∈ Dr.

For a.e. ζ ∈ S2n−1, employ Theorem 2.4 if N = 1; employ Theorem 2.5 if n = 2. In both cases,
we get v = 0 on Dr and thus u = 0 on Br. Apply the weak unique continuation property to get
u ≡ 0.

Remark 4.2. In view of Theorems 1.1-1.3, the following two questions still remain open. With
an approach similar as in the proof to Theorems 1.2-1.3, the resolution of Question 1 is reduced
to that of Question 2.
1. Let Ω be a domain in Cn, n ≥ 3 and N ≥ 2. Suppose u : Ω → CN with u ∈ W 1,p

loc (Ω) for some
p > 2n and satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2n

loc(Ω). If u vanishes to infinite order
in the L1 sense at some z0 ∈ Ω, does u vanish identically?

2. Let Ω be a domain in C containing 0, and n,N ∈ Z+ with n ≥ 3, N ≥ 2. Suppose u : Ω → CN

with u ∈ W 1,2
loc (Ω) and satisfies |∂̄u| ≤ |z|−n−1

n V |u| a.e. on Ω for some V ∈ L2n
loc(Ω). If u vanishes

to infinite order in the L2 sense at 0 ∈ Ω, does u vanish identically?

Next we prove Theorem 1.4 for W 1,1
loc solutions to |∂̄u| ≤ C

|z| |u| a.e. on Ω, where C is a positive

constant. It is not hard to see that u ∈ W 1,q everywhere away from 0 for all q < ∞ using a
boot-strap argument since 1

|z| ∈ L∞ off 0. However, the argument is not directly effective near 0

because 1
|z| /∈ L2n there. The following two lemmas show that u ∈ W 1,q for all q < ∞ near 0 under

the L1 flatness assumption at 0.
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Lemma 4.3. Let u ∈ L1 near 0 ∈ Cn, and vanishes to infinite order in the L1 sense at 0. Then
for each M > 0, u

|z|M ∈ L1 near 0, and vanishes to infinite order in the L1 sense at 0.

Proof. For each m ≥ 1 and ϵ > 0, by the L1 flatness of u at 0,∫
|z|<r

|u|dvz ≤ ϵrm+M for all r << 1.

Then∫
|z|<r

|u|
|z|M

dvz =
∞∑
j=1

∫
r

2j
<|z|< r

2j−1

|u|
|z|M

dvz ≤
∞∑
j=1

2Mj

rM

∫
r

2j
<|z|< r

2j−1

|u|dvz ≤
∞∑
j=1

2Mj

rM

∫
|z|< r

2j−1

|u|dvz

≤ϵ
∞∑
j=1

2Mj

rM
rm+M

2(m+M)(j−1)
= ϵ2Mrm

∞∑
j=1

2−m(j−1) ≤ ϵ2M+1rm for all r << 1.

In particular, u
|z|M ∈ L1 near 0, and vanishes to infinite order in the L1 sense at 0.

Lemma 4.4. Let Ω be a domain in Cn and 0 ∈ Ω. Let u : Ω → CN with u ∈ W 1,1
loc (Ω), and satisfy

|∂̄u| ≤ C
|z| |u| a.e. on Ω for some constant C > 0. Assume u vanishes to infinite order in the L1

sense at 0 ∈ Ω. Then u ∈ W 1,q
loc (Ω) for every q < ∞.

Proof. We first claim if u ∈ Lp near 0 for some p > 1, then u
|z| ∈ Lq for every 1 < q < p. Indeed,

for each q < p, letting ϵ = p−q
p−1

, then 0 < ϵ < 1 and q−ϵ
1−ϵ

= p. By Hölder’s inequality and Lemma
4.3, ∫

|z|<r

∣∣∣∣ u|z|
∣∣∣∣q = ∫

|z|<r

|u|ϵ

|z|q
· |u|q−ϵ ≤

(∫
|z|<r

|u|
|z| qϵ

)ϵ(∫
|z|<r

|u|p
)1−ϵ

< ∞, r << 1.

The claim is proved.
We are now ready to employ the boot-strap argument as in the proof to Theorem 1.1. Since u ∈

W 1,1 near 0, it follows from the Sobolev embedding theorem that u ∈ L
2n

2n−1 near 0. Consequently,
the above proved claim gives u

|z| ∈ Lq near 0 for any q < 2n
2n−1

. Lemma 4.1 further allows us

to obtain u ∈ W 1,q ⊂ Lq′ near 0 for any q′ < 2n
2n−2

. Repeating the process eventually leads to
u ∈ W 1,q near 0 for every q < ∞. The fact that u ∈ W 1,q near every other point than 0 is proved
in a similar but simpler manner (without using the claim) since 1

|z| ∈ L∞ near those points.

Proof of Theorem 1.4: The N = 1 case is an immediate consequence of Theorem 2.2 and Lemma
4.4. So we assume N ≥ 2. Let r be small such that Br ⊂ Ω. For each fixed ζ ∈ S2n−1,
let v(w) := u(wζ), w ∈ Dr. Making use of Lemma 4.4, Lemma 3.3 and Lemma 3.4, we have
v ∈ W 1,2

loc (Dr), vanishes to infinite order in the L2 sense at 0 and satisfies

|∂̄v(w)| = |ζ · ∂̄u(wζ)| ≤ C

|w|
|u(wζ)| = C

|w|
|v(w)|, w ∈ Dr.

Thus, for a.e. ζ ∈ S2n−1 we can apply Theorem 2.3 to get v = 0 on Dr. Hence u = 0 on Br. The
weak unique continuation property further applies to give u ≡ 0.

9



References
[1] S. Alinhac and S. Baouendi: A counterexample to strong uniqueness for partial differential equations of

Schrödinger’s type. Comm. Partial Differential Equations 19 (1994), no. 9-10, 1727–1733. 3

[2] S. Bell and L. Lempert: A C∞ Schwarz reflection principle in one and several complex variables. J. Differential
Geom. 32 (1990), no. 3, 899–915. 1

[3] H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010, 614 pages. 6

[4] S. Chanillo and E. Sawyer: Unique continuation for △ + v and the C. Fefferman-Phong class. Trans. Amer.
Math. Soc. 318 (1990), no. 1, 275–300. 2

[5] L. Evans: Partial differential equations. Second edition.Graduate Studies in Mathematics, 19. American Mathematical
Society, Providence, RI, 2010. xxii+749 pp. 7

[6] Y. Pan and T. Wolff: A remark on unique continuation. J. Geom. Anal. 8 (1998), no. 4, 599–604. 3, 4

[7] Y. Pan and Y. Zhang: Unique continuation for ∂̄ with square-integrable potentials. New York Journal of Mathe-
matics. 29 (2023), 402–416. 2, 3

[8] Y. Pan and Y. Zhang: Unique continuation of Schrödinger-type equations for ∂̄. Preprint. arXiv:2404.01947. 1, 2,
3, 4, 7

[9] Z. Shi: A unique continuation property for |∂̄u| ≤ V |u|. Preprint. arXiv:2406.07650. 1

[10] T. Wolff: Unique continuation for |△u| < V |∇u| and related problems, Revista Math. Iberoamericana. 6 (1990),
no. 3-4, 155–200. 2

[11] T. Wolff: A counterexample in a unique continuation problem. Comm. Anal. Geom. 2 (1994), no. 1, 79–102. 2

pan@pfw.edu,

Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USA.

zhangyu@pfw.edu,

Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USA.

10


	Introduction
	Known results and examples
	Properties of sliced functions
	Proof of the main theorems

